以下の通り表記に誤りがありました。ご迷惑をおかけしましたことを訂正してお詫び申し上げます。

該当刷 ページ	該当箇所	【誤】	【正】
初版~11刷 p.4	4行目	詳しくは、p.79 のコラム	詳しくは、p.80 のコラム
初版~14刷 p.6	6行目、8行目	予想統計	推測統計
初版~5刷 p.70~81		before 70-81 (PDFファイル)	after 70-81 (PDFファイル)
初版~4刷 p.78	中央下 右のグラフ	N(0,1)	$N(0, 1^2)$
11	一番下の表とグラフ	0.5 -0.1915 0.1915 0.15 -0.4332 0.15	0.00 0.5 0.915 0.5 0.5 0 0.00 0.00 0.00 0.00 0.00 0.00 0.0
初版~4刷 p.85	下から 6行目~5行目	5%となる点は1.96なので、50位の人 は、およそ110+10×1.96=129.6点 であると考えられます。	→削除
"	下から 4行目~2行目	1000人中50位の人は上位5%です。標準 正規分布表で5%となる点を調べます。 0.5-0.05=0.45となるので、表中から0.45 を探し、1.64が見つかります。	1000人中50位の人は上位5%です。アカ 大線部は0.5-0.05=0.45となるので、標準 正規分布表中から0.45を探し、1.64が見つ かります。
II.	右下のグラフ	0.05	0.5-0.05
初版~4刷 p.98	13行目	$3000 \div 10000 = 0.03$	$3000 \div 100000 = 0.03$
初版~8刷 p.105	2行目	正規分布の再 <mark>帰</mark> 性に	正規分布の再 <mark>生</mark> 性に
初版~6刷 p.116	1行目	平均が 17 <mark>2</mark> cm となる	平均が 17 <mark>0</mark> cm となる
初版~6刷 p.122	赤枠内下から2行目 分子	$+(Y_1-\overline{Y})+\cdots+(Y_n-\overline{Y})$	$+(Y_1-\overline{Y})^2+\cdots+(Y_n-\overline{Y})^2$
初版~6刷 p.170	本文8行目	p.160 の表の	p. <mark>168</mark> の表の
初版~10刷 p.224	8行目	$X_n^2 - 2X_n\bar{X}^2 + \bar{X}^2$	$X_n^2 - 2X_n\bar{X} + \bar{X}^2$
初版~6刷 p.227	[問題]下 2行目	母平均をσとします	標準偏差をσとします
初版~9刷 p.227	中央下のグラフ	N(μ, 3)	$N(\mu, 3^2)$
初版~13刷 p.228	7行目	$\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5} =$	$\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5} =$
初版~6刷 p.241	下のグラフ	自由度 (8.7)の F分布 4.90	自由度(3,7)の
"	下から2行目	0.204 以上でもありません	0.204 以下でもありません

初版~8刷 p.243	ステップ2 5行目	<mark>6</mark> 個の標本を	n 個の標本を
初版~4刷 p.243	ステップ2 7行目	$N\left(\mu_Y, \frac{{\sigma_X}^2}{m}\right)$	$N\left(\mu_Y, \frac{{\sigma_Y}^2}{n}\right)$
5刷~8刷 p.243	"	$N\left(\mu_Y, \frac{{\sigma_Y}^2}{m}\right)$	$N\left(\mu_Y, \frac{{\sigma_Y}^2}{n}\right)$
初版~6刷 p.244	左下の表	0.750	0.4750
初版~6刷 p.246	2行目	80 の標本を	18 の標本を
初版~8刷 p.246	下から2行目	$U_Y^2 = \frac{8}{10-1}S_Y^2 = \frac{10}{9}125 = \frac{1250}{9}$	$U_Y^2 = \frac{10}{10 - 1} S_Y^2 = \frac{10}{9} \cdot 125 = \frac{1250}{9}$
初版~3刷 p.249	8行目	$\mu_X - \mu_Y$ の仮定のもとで	$\mu_X - \mu_Y = 0$ の仮定のもとで
初版~12刷 p.250	下から2~3行目	対立仮説 H_1 が $\mu_X < \mu_Y$ ですから、 μ_Y が大きいとき、 T の値は小さくなりますから、棄却域は、上右図のように左側 5% をとることにします。	$ar{X}$ は μ_X の近くに、 $ar{Y}$ は μ_Y の近くにあることが多く起こると考えると、対立仮説 $H_1:\mu_X<\mu_Y$ のときは、帰無仮説 $H_0:\mu_X=\mu_Y$ のときに比べて、 T の値が小さくなる傾向にあります。 μ_X に対して、 μ_Y が大きければ大きいほど、 T の値は小さくなります。そこで、 \mathfrak{X} 乗却域は次図のように左側5%にとることにします。
初版~12刷 p.251	1行目	<i>T</i> の値−1.35 は、1.746 以上でも −1.746 以下でもありません。	Tの値 -1.35 は、 -1.746 以下ではありません。
"	5~8行目	いいあんばいに $\sigma_X^2 = \sigma_Y^2$ と見なすことができましたが、 $\sigma_X^2 = \sigma_Y^2$ が棄却された場合にはどうしたらよいでしょうか。この場合には、ウェルチの検定と呼ばれる検定で等平均検定を行なうことができます。	説明のためにそうしましたが、実務では 1 つの結論を出すのに、 2 段階以上の検定をするのは好ましくありません。 $\sigma_X^2 = \sigma_Y^2$ と見なせるか否かに関わらず等平均を検定することができるものとしてウェルチの検定が知られています。
初版~4刷 p.268	6行目	また、p. <mark>258</mark> で計算したように	また、p.264で計算したように
初版~2刷 p.270	最終行	~に従います。ですから、	~に従います。ですから、Tは自由度 (m-1, n-1)のF分布に従います。
初版~6刷 p.275	下から4行目	p. <mark>257</mark> で説明しているように	p. <mark>267</mark> で説明しているように
初版~5刷 p.295~300		before 295-300(PDFファイル)	after 295-300(PDFファイル)
初版~6刷 p.313	下から 5行目~4行目	p.289の問題と同じです。 ですから、 p.291で計算したように	p. <mark>295</mark> の問題と同じです。 ですから、 p. <mark>296</mark> で計算したように
初版~14刷 p.318	下から5行目	回帰直線の <mark>係数</mark> を求めるには	Aをx、Bをyとしたときの回帰直線 の式を求めるには
"	下から3行目	= LINEST(A1 : A5, B1 : B5)	= LINEST(B1 : B5, A1 : A5)
初版~14刷 p.319	上の表(左)	II	II .

『まずはこの一冊から 意味がわかる統計学 』 正誤表

2021/1/18 現在

初版~14刷 p.319	上の表(右)	-0.43 8.43	-0.044 4.104
"	本文1行目	y = -0.43x + 8.43	y = -0.044x + 4.104
初版~4刷 p.319	下のグラフ	(1) N(O, I ²) (2) N(O, I ²) のグラフ 面積0.8	(1) N(O, j²) のグラフ のグラフ 面積O.8