以下の通り表記に誤りがありました。ご迷惑をおかけしましたことを訂正してお詫び申し上げます。

該当刷ページ	該当箇所	【誤】	【正】
初版~2刷 p.59	中央見出し下 1行目	<i>f(x)</i> に単なる	F (x) に単なる
初版~8刷 p.62	主な関数の積分 2行目	$\log x + C (a = -1)$	$\ln x + C (\ln x = \log_e x, \ a = -1)$
"	主な関数の積分 5行目	$(\operatorname{In} x = \log_e x)$	→削除
初版~4刷 p.78	下から 4行目	これを式4の	これを式⑦の
初版~4刷 p.80	5行目	いわゆる <mark>楕円</mark> である。	いわゆる2次曲線(楕円、放物線、双 曲線)である。
初版~4刷 p.85	8行目	$\frac{dN}{dt} = Nr(K - N) = Na(K - N)$	$\frac{dN}{dt} = Nr = Na(K - N)$
初版~4刷 p.133	本文 14行目	「5次以上で存在しない」	「5次以上で解が存在しない」
"	"	実数解でのこと。ご存じの通り、	代数的解法(四則演算と冪根を使う 操作の有限回の組合せ)が存在し ないということ。ご存じの通り、
初版~5刷 p.137	下から7行目 と 6行目	点 B (<mark>i, 0</mark>) に	点 B(<mark>0, i</mark>) に
初版~4刷 p.145	本文 4行目	$\iint\limits_{S} \frac{\partial p}{\partial \eta} dx dy = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \frac{\partial p}{\partial y} dy dx$	$\iint\limits_{S} \frac{\partial p}{\partial y} dx dy = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \frac{\partial p}{\partial y} dy dx$
初版~8刷 p.160	本文 下から 10行目〜8行目	$h'(z) = \lim_{c \to 0} \frac{h(z) - h(c)}{z - c}$ $= \lim_{c \to 0} \frac{(z - c)^2 f(z) - 0}{z - c}$ $= \lim_{c \to 0} (z - c) f(z)$	$h'(z) = \lim_{z \to c} \frac{h(z) - h(c)}{z - c}$ $= \lim_{z \to c} \frac{(z - c)^2 f(z) - 0}{z - c}$ $= \lim_{z \to c} (z - c) f(z)$
初版~4刷 p.172	14行目	$\mathbf{B} = a \times \mathbf{e}_1$	$\mathbf{A} = a \times \mathbf{e}_1$
初版~7刷 p.174	(3) 2行目	偶置	偶置換
"	(3) 4行目	{1, <mark>2,3</mark> }や{1,3,3}など	{1,1,2}や{1,3,3}など
初版~7刷 p.196	本文 12行目	$\det(kA) = k^n A$	$\det(kA) = k^n \det(A)$
初版~7刷 p.200	3.	i 行 とj 列 を c 倍した	(i,j)成分を c にした
初版~4刷 p.211	2行目	$= \left(\frac{1}{2} \frac{\partial A_x}{\partial x} \Delta x, \frac{\partial A_y}{\partial x}, \frac{\partial A_z}{\partial x}\right)$	$= \frac{1}{2} \Delta x \left(\frac{\partial A_x}{\partial x}, \frac{\partial A_y}{\partial x}, \frac{\partial A_z}{\partial x} \right)$
"	3行目	$+\left(-\frac{1}{2}\frac{\partial A_x}{\partial x}\Delta x, \frac{\partial A_y}{\partial x}, \frac{\partial A_z}{\partial x}\right)$	$-\frac{1}{2}\Delta x \left(\frac{\partial A_x}{\partial x}, \frac{\partial A_y}{\partial x}, \frac{\partial A_z}{\partial x}\right)$
初版~4刷 p.226	下から 4行目	線型独立(linear dependence)	線型独立(linear <mark>in</mark> dependence)

初版~4刷 p.226	下から 2行目	線型従属(linear <mark>in</mark> dependence)	線型従属(linear dependence)
初版~3刷 p.232	7行目	$T_{ij} = T_{ji}$, $T_{ij} = T_j^i$ であること	T_{ij} = T^i_j であること
初版~8刷 p.232	13行目	$=A^{\nu}_{i}A^{\mu}_{j}T_{\mu\nu}$	$=A^{\nu}_{i}A^{\mu}_{j}T_{\nu\mu}$
初版~2刷 p.313	7行目	$u_r = rac{\partial \ \psi}{\partial u_r}$	$\mathbf{x}_r = \frac{\partial \ \psi}{\partial u_r}$
初版~2刷 p.317	枠下 6行目	$\frac{dH}{dt} = \left(\frac{\partial H}{\partial q_1} \frac{dq_1}{dt} + \frac{\partial H}{\partial q_1} \frac{dq_1}{dt} + \cdots\right)$	$\frac{dH}{dt} = \left(\frac{\partial H}{\partial q_1} \frac{dq_1}{dt} + \frac{\partial H}{\partial q_2} \frac{dq_2}{dt} + \cdots\right)$
"	枠下 7行目	$+ \left(\frac{\partial H}{\partial p_1} \frac{dp_1}{dt} + \frac{\partial H}{\partial p_1} \frac{dp_1}{dt} + \cdots \right)$	$+ \left(\frac{\partial H}{\partial p_1} \frac{dp_1}{dt} + \frac{\partial H}{\partial p_2} \frac{dp_2}{dt} + \cdots \right)$
初版~4刷 p.329	下から 2行目	$+\left(\frac{a_2a_3^2}{16a_4^3} - \frac{a_1a_3}{4a_4^2} + \frac{a_0}{a_4}\right) = 0$	$+\left(-\frac{3a_3^4}{256a_4^4} + \frac{a_2a_3^2}{16a_4^3} - \frac{a_1a_3}{4a_4^2} + \frac{a_0}{a_4}\right) = 0$
初版~4刷 p.335	1行目	$R\int_0^{\frac{\pi}{2}} e^{-aR\sin\theta} d\theta <$	$2\varepsilon R \int_0^{\frac{\pi}{2}} e^{-aR\sin\theta} d\theta <$
初版~4刷 p.337	下から3行目	$y' = \pm \sqrt{\frac{a\sin^2\frac{\theta}{2}}{a - a\sin^2\frac{\theta}{2}}}$	$dy = \pm \sqrt{\frac{a\sin^2\frac{\theta}{2}}{a - a\sin^2\frac{\theta}{2}}}$