以下の通り表記に誤りがありました。ご迷惑をおかけしましたことを訂正してお詫び申し上げます。

該当刷 ページ	該当箇所	【誤】	【正】
初版 p.26	表1.1の 乱層雲の高度	300~600(メートル)以下	雲底はふつう下層、雲頂は6キロメートル くらい
初版~3刷 p.35	4行目	下層雲	中層雲
初版~3刷 p.95、p.96	p.95の後ろから3行 目~p.96の1行目	山を越えた空気が地上まで達し、強風を もたらすことがあります。これはおろし風 とよばれ、日本全国の山脈付近での地域 特有の現象	山を越えた空気が地上まで達し、局地的に強風をもたらすことがあります。これはおろし風やだし風とよばれ、全国の山脈・河川付近での地域特有の現象
初版 p.141	2行目	氷過飽	氷飽和
初版~3刷 p.174	5行目	※持ち上げ凝結高度の説明	正確には、持ち上げはじめる空気塊の露点温度の等飽和混合比線と、乾燥断熱線の交点が持ち上げ凝結高度です。本書では等飽和混合比線の説明をしていないので、持ち上げ凝結高度の説明は正確ではないことにご注意ください。
初版 p.179	後ろから6行目	下降流が生じます	下降流が生じます(浅井,1996)
初版~3刷 p.190	1行目	(Madden-Julian Oscilation:MJO)	(Madden-Julian Oscillation:MJO)
初版 p.215	6行目	中層のメソサイクロンがあっても竜巻が 発生するのはアメリカでは約20%である ことがわかっています。	アメリカではメソサイクロンがあっても竜 巻が発生するのは約25%であると報告されています(Trapp et al. 2005)。
初版 p.221	5行目	図5.10	図5.11
初版~3刷 p.223	後ろから2行目	前述の着氷放電によって、	前述の着氷帯電によって、
初版~3刷 p.231	10行目~16行目	にんじんのような形をした雲として現れます(図5・17)。このような雲はテーパリングクラウド(tapering cloud)といいます。「テーパリング(tepering)」とは「先の尖った」という意味で、この雲はにんじん雲ともよばれます。テーパリングクラウドの尖った部分が	にんじんのような形の雲(にんじん雲)として現れます(図5・17)。にんじん雲はこれまでテーパリングクラウド(tapering cloud)と呼ばれることが多くありましたが、現在ではこの呼び方は推奨されていません。にんじん雲の尖った部分が
初版 p.255	図5.3の キャプション	山梨県上空からの	静岡県上空からの山梨県方面の
初版 p.313	図C.25	地域時系列予報の例	注意報・警報の例
初版~3刷 p.314	1行目	気象庁のレーダー・ナウキャストの	気象庁の高解像度降水ナウキャスト (http://www.jma.go.jp/jp/highresorad/) 、 レーダー・ナウキャストの
初版 p.320	参考文献に追加		浅井冨雄『ローカル気象学』東京大学出版会、1996年、102-107
初版 p.326	参考文献に追加		Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Weather and Forecasting, 20, 680–687.