

はじめに……3

第 1 章 地球は巨大な蒸留器なのか アリストテレスによる現実的な説明 ノアの洪水はどのようにして起こったか 地球をめぐる水 24 その概念ができるまで 32

. 18 . 16

22

第 2

章 雲と凝結核 ——雲 に関するホットな話題 雲に関するホットな話題 雲に関するホットな話題	地球表面での水のやりとり	、ド・ハレーが
マリックの発見	د ب ا	エドモンド・ハレーが推定した地中海からの蒸発量 42

第 3 章 雨粒の生成 ―― メカニズム解明から人工降雨へ

雲の種類と雨の形成	論争の決着	雲の中で起こる連鎖反応	世界初の人工降雨実験	シンプソンの反論	フィンダイゼンが描いた夢	ベルジェロンが唱えた「氷晶雨仮説」	水は	水と氷とは飽和水蒸気圧が異なる	雲粒は合体しない	雲は牛乳のようなもの?	雨粒はどのようにしてできるのか
種類	の決	中で	初の	プソ	ンダ	ジェ	°C	氷と	は合	牛 到.	はど
٤	着	起	人	ر ک	イ		は0℃では凍らない	は	体	の	0
りの	:	こる	降	反	セン	が	は凍	起和	しな	よう	よう
形成		連錯	雨宇	論	が 坩	唱え	らか	水蒸	い	なむ	に
		反	験		い	た	い	気		0	て
		心	:	氷	た 夢	氷		圧 が	ベ	?	でき
				晶 が		品品	過	異か	ルジ		るの
				なく	 気	仮	過冷却とは:	る	エロ		か
				て	- 気象の人工	説.	ح ا	:	ン		:
:	i	i	i	も 雨	人	i	ば :		が考	i	i
		i		は路	工調				察 :		
		i	i	3	調節・				i		
	i	i		i	:				:		:
				i							
		i	i	氷晶がなくても雨は降る	i				i		
	i	i		i	:				:		:
		i	i	i	i	i			i	i	
	i	i		i	:				:		:
				i							
i		i	i	i	i	i			i	i	:
118	:	i	i	i	104	:			ベルジェロンの考察	888	86
118	115	113	109	: 106	104	IOI	: 97	95	90	88	86

第4章 雨と植物 ―― 森林は雨を大気に返す

森林によってピーク流量が増加することもある	森林が河川流量におよぼす影響を調べるにはどうすればよいのか	ハイドログラフとピーク流量	森林は洪水を防ぐのか	森林はどれだけの水を大気に放出するのか	樹木からの蒸散量をどうやって測るのか	樹木はどうやって高いところまで水を吸い上げるのか	植物による吸水と蒸散のしくみ	人間とヒマワリの発汗量を比較する	雨が降っている最中になぜ蒸発が起こるのか	樹木からの雨の蒸発 ——「遮断損失」とは126	木の葉にたまった雨粒はどこへ行くのか
: 156	152	150	: 147	: 143	: 140	: 128	125	132	128	: 126	122

何	第 6 章	セ	雨	母	ポー	ペロー	破	地上	1114	雨
何が問題か	降雨の流出 ――― 雨はどんな経路で川にたどりつくのか	セシウムの行方	雨が地下水になるまで何年かかるか ワʲ	母親の期待に応えたダルシー84	ポテンシャルの高い水、低い水17	1-の実験173	産した不運な男	9中水のさまざまな形態107	ミクロに見た雨の浸透165	雨が土壌に浸み込む速さ162

第7章 合理式 ホー 気象観測を50年以上続けた男 分布型流出モデル 蒸発は溶解現象か タンクモデル 単位図法 日本のヒノキ林で起こるホートン地表流 やはり地表流は存在する 地中洪水流の存在 森林に地表流 ŀ ンの考えと論争の コンピューターのいらない簡単な方法………………… は いあるの タンクの底から出てくる水量を河川流量と考える……………… 「気象オタク」ドルトンの実験とその発展 か 始まり 236 234 226 223 202 220 219 215 213 210 205