	はじめに	3
第】章	生命が誕生して人類が現れるまで	
1-1	生命はどこから来たか?	12
1-2	最初の生命はどのようなものだったか?	15
1-3	猛毒の酸素を薬に変えた生物の生存戦略とは? ──好気性細菌とミトコンドリアのはなし	17
1-4	古細菌は新しい? 	21
1-5	多細胞生物の登場	23
1-6	単細胞生物は単純ではない	26
1-7	カンブリア爆発とは? 動物のボディプランのはなし	29
1-8	生物は何度も大絶滅の危機に直面してきた	32
1-9	生物が進化するというのは本当か?	34
1-10	脊椎動物の進化	36
1-11	恐竜は今も生きている?	39
1-12	人類はどこで誕生したのか?	41
第2章	細胞のしくみから個体の成り立ちま	て
2-1	すべての生物は細胞からできている	46
2-2	細胞には 2 種類ある	48
2-3	細胞の設計図を収納する図書館	50
2-4	細胞の中の発電所	52
2-5	細胞内の物質の通り道 (小胞体とゴルジ体) ——タンパク質の修飾 (お化粧)	54

(2-6)	細胞の中には骨がある? 一細胞骨格の働き	···· 56
2-7	細胞はどのようにして全く同じ 2 個の細胞に分かれるか? ――細胞分裂のはなし	····· 59
2-8	最近明らかになった染色体の構造	···· 61
2-9	細胞が集まって組織になる	63
2-10	器官から器官系へ	···· 67
2-11	心臓はどうして左側にあるのか? ──レフティーという遺伝子の働き	···· 69
	せいぶつの窓 動物学と植物学では、スケッチの流儀が違う	···· 71
第3章	生体を構成する物質	
3-1	どうしてケイ素を含む生物種は少ないか?生体を構成する原子の特徴	···· 74
3-2	生命活動のエネルギー源	···· 77
3-3	生命活動を行なう主役	···· 79
3-4	生命の設計図とそのコピー	82
3-5	体内に含まれるあぶらは何をしているのか?	···· 86
3-6	どうして私たちの体は金属元素を必要とするのか ——生体の微量元素の話	···· 88
3-7	エネルギー通貨とよばれる物質	90
3-8	ホルモンとは何か?	92
3-9	植物にもホルモンがある?	···· 96
	<u>せいぶつの窓</u> 快楽物質とはどのようなものか?	99
第4章	遺伝子とDNAの正体をさぐる	
4-1	親から子へ何が伝わるのか	·· 102
4-2	遺伝子の実体は何か?	106

(4-3)	ハエの研究がヒトの研究に役立つ	108
4-4	――体づくりのホックス遺伝子の発見 遺伝子を切ったり貼ったりする方法	111
+-+	遺伝子組み換えの基礎知識	
(4-5)	遺伝子組み換え作物の現状	113
4-6	新しい遺伝子組み換え技術	116
4-7	遺伝子を短時間で大量に増やす方法	118
4-8	遺伝子の塩基配列決定法	120
4-9	ヒトゲノムとは何か? ——ヒトゲノム計画がもたらした恩恵	123
4-10	日本人はどこから来たか? 遺伝子から探る先祖がたどった道筋	126
4-11	日本人の多くがお酒に弱いわけ	129
第5章	動物の発生のしくみ	
11 2 4	判りがオエックトの	
5-1	前成説と後成説の論争 遺伝子が発見されるまで	134
	前成説と後成説の論争	
5-1	前成説と後成説の論争 遺伝子が発見されるまで 細胞の全能性とは何か?	136
5-1	前成説と後成説の論争 遺伝子が発見されるまで 細胞の全能性とは何か? 失った全能性を初期化する技術 受精卵から胚ができるまで ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが	136 138
5-1 5-2 5-3	前成説と後成説の論争 一遺伝子が発見されるまで 細胞の全能性とは何か? 一失った全能性を初期化する技術 受精卵から胚ができるまで 一ウニの発生とカエルの発生	136 138
5-1 5-2 5-3	前成説と後成説の論争 一遺伝子が発見されるまで 細胞の全能性とは何か? 一失った全能性を初期化する技術 受精卵から胚ができるまで 一ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが 集まって組織をつくるのはどうしてか?	136 138 141
5-1 5-2 5-3 5-4	前成説と後成説の論争 一遺伝子が発見されるまで 細胞の全能性とは何か? 一失った全能性を初期化する技術 受精卵から胚ができるまで 一ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが 集まって組織をつくるのはどうしてか? 一カドヘリンの話 細胞の運命はどのようにして決まるのか?	136 138 141 144
5-1 5-2 5-3 5-4	前成説と後成説の論争 一遺伝子が発見されるまで 細胞の全能性とは何か? 一失った全能性を初期化する技術 受精卵から胚ができるまで 一ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが 集まって組織をつくるのはどうしてか? 一カドヘリンの話 細胞の運命はどのようにして決まるのか? ーオーガナイザーの正体 前と後ろ、背中とお腹の方向性はどのようにして決まるのか?	136 138 141 144 148
5-1 5-2 5-3 5-4 5-5 5-6	 前成説と後成説の論争 遺伝子が発見されるまで 細胞の全能性とは何か? 大った全能性を初期化する技術 受精卵から胚ができるまで ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが集まって組織をつくるのはどうしてか?	136 138 141 144 148 151
5-1 5-2 5-3 5-4 5-5 5-6 5-7	前成説と後成説の論争 一遺伝子が発見されるまで 細胞の全能性とは何か? 一失った全能性を初期化する技術 受精卵から胚ができるまで 一ウニの発生とカエルの発生 心臓は心臓の細胞どうし、肝臓は肝臓の細胞どうしが 集まって組織をつくるのはどうしてか? 一カドヘリンの話 細胞の運命はどのようにして決まるのか? 一オーガナイザーの正体 前と後ろ、背中とお腹の方向性はどのようにして決まるのか? 一前後軸・背腹軸を決める遺伝子 体節構造をつくる遺伝子 ハエとヒトとで共通する体節構造形成遺伝子のはなし 手足はどのようにしてつくられるのか?	136 138 141 144 148 151

第6章	生命維持のしくみ ――代謝・発酵・光合成	
6-1	代謝とは何か?	162
6-2	酵素とは何か?	164
6-3	呼吸には 2 通りがある?	166
6-4	発酵とは何か?	171
6-5	ホタルイカはどのようにして光るのか?	173
6-6	植物はどのようにして栄養分を手に入れるのか? ——光合成のしくみ	175
6-7	空気中の窒素を生体内にとり込むしくみ ····································	178
	せいふつの窓 光がなくても有機物を合成できる生物のはなし――化学合成のはなし …	180
第7章	生物の反応と調節のメカニズム	
7-1	筋肉はどのようにして縮むのか?筋肉の構造と筋収縮のしくみ	182
7-2	神経はどのようにして興奮を速く伝えることができるのか? 一神経の興奮と跳躍伝導のはなし	185
7-3	音の刺激はどのようにして脳に伝わるか? ―――― 音の聞こえるしくみ	189
7 - 4	光の刺激はどのようにして脳に伝わるか? ——ものの見えるしくみ	192
7-5	においを感じるしくみ	196
7-6	味を感じるしくみ	198
7-7	磁力を感じるしくみ	199
7-8	脳を調べる 2 つのアプローチ 神経ネットワーク研究と脳の画像解析	200
7-9	ブルーライトは生物時計を狂わせる	204
	せいふつの窓 動物には第六感はあるのか?サメのロレンツィーニ器官とヘビのピット器官	206

(第8章) 生物の多様性と絶滅危惧種

8-1	どうして世界にはたくさんの生物種がいるのか? ——生物の多様性	208
8-2	生物学ではどうして人間のことを「ヒト」とカタカナで書くのか? 学名と和名のはなし	211
8-3	生物の世界には動物と植物の他に第3の生物がいる 画類のはなし	214
8-4	近い将来、ウナギが食べられなくなる?	217
8-5	ワシントン条約とは何か?	220
8-6	罰金の最高額は 1 億円?	222
8-7	外国からやってきた危険な生物たち ——外来種のはなし	224
	せいふつの窓 最悪の外来生物ヒアリが日本に侵入した	227
8-8	絶滅が心配される野生生物を増やすための秘策 一オスとメスひと組だけではゴリラは繁殖できない	228
8-9	生物の多様性を守る秘策	230
	せいふっの窓 話題の生物種 ――世界一小さいカメレオンなど	232
第9章	生物は環境の中でどう生きている	らか
第9章		らか 234
	生物は環境の中でどう生きている 生態系を構成する生産者と消費者	
9-1	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 ーエコシステムとは何か? ハビタットとニッチとは何か?	234
9-1	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 ーエコシステムとは何か? ハビタットとニッチとは何か? ーわかりにくい生態学用語を解きほぐす 植物は動物よりがまん強い	234 237
9-1 9-2 9-3	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 — エコシステムとは何か? ハビタットとニッチとは何か? — わかりにくい生態学用語を解きほぐす 植物は動物よりがまん強い — 最新のゲノム研究から探る植物の生存戦略 生態系にはピラミッドがある?	234 237 240
9-1 9-2 9-3 9-4	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 —エコシステムとは何か? ハビタットとニッチとは何か? —わかりにくい生態学用語を解きほぐす 植物は動物よりがまん強い —最新のゲノム研究から探る植物の生存戦略 生態系にはピラミッドがある? —生産者と消費者の関係 生活環境の良さがその生物の運命を決める	234 237 240 242
9-1 9-2 9-3 9-4 9-5 9-6 9-7	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 —エコシステムとは何か? ハビタットとニッチとは何か? 一わかりにくい生態学用語を解きほぐす 植物は動物よりがまん強い 一最新のゲノム研究から探る植物の生存戦略 生態系にはピラミッドがある? 一生産者と消費者の関係 生活環境の良さがその生物の運命を決める 一最適密度のはなし どうして深海にもぐるアザラシの行動パターンがわかるのか?	234 237 240 242 244
9-1 9-2 9-3 9-4 9-5 9-6	生物は環境の中でどう生きている 生態系を構成する生産者と消費者 —エコシステムとは何か? ハビタットとニッチとは何か? —わかりにくい生態学用語を解きほぐす 植物は動物よりがまん強い —最新のゲノム研究から探る植物の生存戦略 生態系にはピラミッドがある? —生産者と消費者の関係 生活環境の良さがその生物の運命を決める —最適密度のはなし どうして深海にもぐるアザラシの行動パターンがわかるのか? —バイオロギングのはなし 汚染物質の生物濃縮	234 237 240 242 244 246