以下の通り表記に誤りがありました。ご迷惑をおかけしましたことを訂正してお詫び申し上げます。

該当刷 ページ	該当箇所	【誤】	【正】
初版 p.38	下から3行目	$\dot{y} = \dot{r}\sin\theta r\dot{\theta}\cos\theta$ $\ddot{y} = \ddot{r}\sin\theta + \dot{r}\dot{\theta}\cos\theta\dot{r}\dot{\theta}\cos\theta \sim$	$\dot{y} = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$ $\ddot{y} = \ddot{r}\sin\theta + \dot{r}\dot{\theta}\cos\theta + \dot{r}\dot{\theta}\cos\theta \sim$
初版~2刷 p.31	4行目	$=\frac{d}{dt}(\dot{\boldsymbol{x}}\boldsymbol{i}+\dot{\boldsymbol{y}}\boldsymbol{j})$	$=\frac{d}{dt}(x\boldsymbol{i}+y\boldsymbol{j})$
初版~2刷 p.42	10行目	(2. <mark>33</mark>) の左辺に	(2. <mark>32</mark>) の左辺に
初版~2刷 p.46	8行目	点Pの速度は(2.48), (2.51)	点Pの速度は(2.47), (2.49)
初版~2刷 p.47	6行目	そして、(2.55)の	そして、(2.54)の
"	8行目	この(2.46)~(2.55)	この(2.45)~(2.54)
初版~2刷 p.55	[1] 4行目	$\sim z \frac{d\mathbf{k}}{dt} + \dot{z} \frac{\dot{\mathbf{k}}}{\mathbf{k}}$	$\sim z \frac{d\mathbf{k}}{dt} + \dot{z}\mathbf{k}$
初版~2刷 p.61	3行目	$-\frac{\sin\theta\cos\theta}{r} - \frac{\partial V}{\partial\theta}$	$+\frac{\sin\theta\cos\theta}{r} - \frac{\partial V}{\partial\theta}$
"	4行目	$-\frac{\sin\theta\cos\theta}{r}\frac{\partial V}{\partial\theta}$	$-\frac{\sin\varphi\cos\varphi}{r}\frac{\partial V}{\partial\varphi}$
初版~2刷 p.69	2行目と 10行目	(4.2)	(4.4)
初版~2刷 p.92	下から2行目	$\frac{\partial T(\dot{x})}{\partial \dot{q}_i} = \frac{\partial T}{\partial \dot{x}_i} \frac{\partial \dot{x}_i}{\partial \dot{q}_i}$	$\frac{\partial T(\dot{x})}{\partial \dot{q}_i} = \frac{\partial T}{\partial \dot{x}_j} \frac{\partial \dot{x}_j}{\partial \dot{q}_i}$
初版~2刷 p.93	1行目~5行目	$p_{i} = p_{xj} \frac{\partial \dot{x}_{j}}{\partial \dot{q}_{i}}$ $= p_{xj} \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial q_{i}} \dot{q}_{i} + \frac{\partial x_{j}}{\partial t} \right)$ $= p_{xj} \left\{ \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial q_{i}} \right) \dot{q}_{i} + \frac{\partial x_{j}}{\partial q_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{q}_{i}} + \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial t} \right) \right\}$ $= p_{xj} \left(0 + \frac{\partial x_{j}}{\partial q_{i}} + 0 \right)$ $= p_{xj} \frac{\partial x_{j}}{\partial q_{i}}$	$p_{i} = p_{xj} \frac{\partial \dot{x}_{j}}{\partial \dot{q}_{i}} = p_{xj} \frac{\partial}{\partial \dot{q}_{i}} \left\{ \frac{dx_{j}(\{q_{k}\}, t)}{dt} \right\}$ $= p_{xj} \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial x_{j}}{\partial t} \right)$ $= p_{xj} \left\{ \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial q_{k}} \right) \dot{q}_{k} + \frac{\partial x_{j}}{\partial q_{k}} \frac{\partial \dot{q}_{k}}{\partial \dot{q}_{i}} + \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial x_{j}}{\partial t} \right) \right\}$ $= p_{xj} \left(0 + \frac{\partial x_{j}}{\partial q_{i}} + 0 \right)$ $= p_{xj} \frac{\partial x_{j}}{\partial q_{i}}$
"	9行目~10行目	しかし第2項は \dot{q}_i を \dot{q}_i で微分しているので1となり,第2項の $\frac{\partial x_j}{\partial q_i}$ だけが残るというわけである。	しかし第2項では、 k についての総和をとったとき、 $k=i$ の場合の項のみ、 \dot{q}_i の \dot{q}_i による微分が係数1 として残り、それ以外 $(k\neq i)$ は全て 0 になるので、上記のようになる。
初版~2刷 p.100	本文7行目	一般カ(7. <mark>3</mark>)に	一般力(7.4)に
初版 p.157	1行目	(12. <mark>19</mark>)を見れば	(12. <mark>20</mark>)を見れば

初版 p.161	12行目	Ⅵ章の34節で	VI章の <mark>33</mark> 節で
初版 p.180	6行目	となり、λ _λ を定数扱いすると ³¹ , 右辺は	のままである。右辺には積の微分によって $\lambda_k \frac{\partial f_k}{\partial q_i}$ と $fk \frac{\partial \lambda_k}{\partial q_i}$ の項が加わるが,微分演算の後に $fk=0$ とおいてしまうので,右辺に後者を含めておく必要はなく,
11			→ 脚注 31 を4行目に移動 すると、 λ_k ³¹ も f_k も \dot{q} には依存しないので、
初版~2刷 p.181	1行目	(15.8)	(15.5)
初版~2刷 p.199	下から4行目	$\therefore mr\dot{\theta}^2 + mg\cos\theta - \lambda = 0$	$\therefore mr\dot{\theta}^2 + mg\cos\theta + \lambda = 0$
初版 p.208	最終行	これが任意の δ x ; に	これが任意の δ <i>x</i> に
初版 p.215	9行目	$N = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i - K \right) = 0$	$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\delta q_i - K\right) = 0$
"	下から2行目	$N = \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} - K$	$N = \frac{\partial L}{\partial \dot{q}_i} \delta q_i - K$
初版~2刷 p.219	4行目	$\frac{\partial L}{\partial \dot{\theta}} = mr^2 2 \dot{\theta}$	$\frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta}$
"	5行目	$m\big(2\dot{r}\dot{\theta}+r\ddot{\theta}\big)=0$	$m\mathbf{r}(2\dot{r}\dot{\theta} + r\ddot{\theta}) = 0$
初版~2刷 p.222	1行目~9行目	$N = rac{\partial L}{\partial \dot{q}_i} \delta q_i - K$ が保存するので、①⑤を代入して $N = rac{\partial L}{\partial \dot{q}_i} \dot{q}_i \Delta t - L \Delta t$ $= \left(rac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L ight) \Delta t$ $= (p_i \dot{q}_i - L) \Delta t$ $= H \Delta t$ $= - 定$ ここで、 Δt は任意の量であるから $H = - 定$	$\frac{dN}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i - K \right)$ $= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \dot{q}_i \Delta t - L \Delta t \right) = \frac{d}{dt} \left\{ \left(\frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \right) \Delta t \right\} = 0$ ここで、 $\Delta t (\neq 0)$ は任意の (無限小) 定数であるから $\frac{dN}{dt} = \Delta t \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \right) = 0$ 両辺を Δt で割って (…) 内を変形すると $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \right) = \frac{d}{dt} \left(p_i \dot{q}_i - L \right) = \frac{dH}{dt} = 0$ 従って $H = - 定$
"	下から6行目	$x_j(t) \to x_j(t) + \delta x(t)$	$x_j(t) \to x_j(t) + \delta x$

		2.	/ N
初版~2刷 p.223	5行目~9行目	$N=rac{\partial L}{\partial \dot{q}_i}\delta q_i-K$ $=\sum_{j=1}^N rac{\partial L}{\partial \dot{x}_j}\cdot \delta x-0=-$ 定 ここで、 δx は任意の仮想変位であるから $\sum_{j=1}^N rac{\partial L}{\partial \dot{x}_j}=\sum_{j=1}^N P_j=-$ 定 故に、空間の並進対称性があるとき、運動量保存則が成り立つ。	$\frac{dN}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i - K \right) = \frac{d}{dt} \left(\sum_{j=1}^N \frac{\partial L}{\partial \dot{x}_j} \delta x - 0 \right) = 0$ ここで、 $\delta x (\neq 0)$ は任意の (無限小) 定べクトルであるから $\frac{dN}{dt} = \delta x \cdot \frac{d}{dt} \left(\sum_{j=1}^N \frac{\partial L}{\partial \dot{x}_j} \right) = 0$ 両辺を δx で割って、 $\frac{d}{dt} \left(\sum_{j=1}^N \frac{\partial L}{\partial \dot{x}_j} \right) = \frac{d}{dt} \left(\sum_{j=1}^N \mathbf{p}_j \right) = 0 \Rightarrow \sum_{j=1}^N \mathbf{p}_j$ =一定
初版 p.223	下から5行目	~が変化しないとすると	~は変化しないので
初版~2刷 p.224	1行目	$\delta q_i = \delta \mathbf{x}_j = \delta \boldsymbol{\varphi} \times \mathbf{x}$	$\delta q_i = \delta \mathbf{x}_j = \delta \mathbf{\varphi} \times \mathbf{x}_j$
"	2行目	$\dot{q}_i = \dot{x}$	$\dot{q}_i = \dot{\pmb{x}}_j$
"	4行目~11行目	$N = rac{\partial L}{\partial \dot{q}_i} \delta q_i - K$ $= \sum_{j=1}^N rac{\partial L}{\partial \dot{x}_j} \cdot \left(\delta oldsymbol{arphi} imes oldsymbol{x}_j ight) - 0$ $= \sum_{j=1}^N oldsymbol{p}_j \cdot \left(\delta oldsymbol{arphi} imes oldsymbol{x}_j ight)$ $= \sum_{j=1}^N \delta oldsymbol{arphi} \cdot \left(oldsymbol{x} imes oldsymbol{v}_j imes oldsymbol{p}_j ight)$ $(\because \textit{Z} \end{bmatrix} oldsymbol{3} oldsymbol{\sigma} \cdot \left(oldsymbol{x} imes oldsymbol{v}_j imes oldsymbol{v}_j ight)$ $= - \Xi$ $\Box \Box \end{constraints} \delta oldsymbol{arphi} \end{constraints} \Box \end{constraints} oldsymbol{N} oldsymbol{x}_j imes oldsymbol{p}_j = - \Xi$	$\frac{dN}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial q_i} \delta q_i - K \right)$ $= \frac{d}{dt} \left\{ \sum_{j=1}^{N} \frac{\partial L}{\partial x_j} \cdot (\delta \boldsymbol{\varphi} \times \boldsymbol{x}_j) - 0 \right\}$ $= \frac{d}{dt} \left\{ \sum_{j=1}^{N} \boldsymbol{p}_j \cdot (\delta \boldsymbol{\varphi} \times \boldsymbol{x}_j) \right\}$ $= \frac{d}{dt} \left\{ \sum_{j=1}^{N} \delta \boldsymbol{\varphi} \cdot (\boldsymbol{x}_j \times \boldsymbol{p}_j) \right\} = 0$ (: スカラー3重積 $\boldsymbol{A} \cdot (\boldsymbol{B} \times \boldsymbol{C}) = \boldsymbol{B} \cdot (\boldsymbol{C} \times \boldsymbol{A})$) ここで、 $\delta \boldsymbol{\varphi} (\neq \boldsymbol{0})$ は任意の (無限小) 定べク トルであるから $\frac{dN}{dt} = \delta \boldsymbol{\varphi} \cdot \frac{d}{dt} \left\{ \sum_{j=1}^{N} (\boldsymbol{x}_j \times \boldsymbol{p}_j) \right\} = 0$ 両辺を $\delta \boldsymbol{\varphi}$ で割って、 $\frac{d}{dt} \left\{ \sum_{j=1}^{N} (\boldsymbol{x}_j \times \boldsymbol{p}_j) \right\} = 0 \Rightarrow \sum_{j=1}^{N} (\boldsymbol{x}_j \times \boldsymbol{p}_j) = -\hat{\boldsymbol{x}}$
初版 p.231	1~3行目	また、ハミルトン形式では、 (21.5) または (21.20) のように、或る物理量 f の時間微分 (偏微分でも良い) がラグランジアン、またはハミルトニアンを別の物理量 g で	また、ハミルトン形式では、 (21.5) のように、或る物理量 f の時間微分(偏微分でも良い)がラグランジアンを別の物理量 g で
初版~2刷 p.236	5行目	従って、(21. <mark>40</mark>)は	従って、(21. <mark>41</mark>)は
初版~2刷 p.239	最終行	(21. <mark>54</mark>)に代入し	(21. <mark>55</mark>)に代入し
初版 p.240	7行目	{…}内は	(…)内は

初版 p.240	10行目	$\dot{q}_i + \frac{\partial H}{\partial p_i} = 0 \implies \dot{q}_i = -\frac{\partial H}{\partial p_i}$	$\dot{q}_i - \frac{\partial H}{\partial p_i} = 0 \implies \dot{q}_i = \frac{\partial H}{\partial p_i}$
11	下から4行目	$=\int_{q_1}^{q_2} p_i dq_i -$	$= \int_{q_i(t_1)}^{q_i(t_2)} p_i dq_i -$
初版~2刷 p.240~p.241	p.240の最終行~ p.241の3行目	(21.60)の第1 項は簡約された作用(を変数変換したもの)であるが,空間を周期運動する系の軌道に沿って一周だけ積分したものとも見ることができ,数学的には周回積分(閉曲線に沿った線積分)に相当する。周回積分の記号を用いると,(21.60)の第1 項は,	(21.60)の第1項は簡約された作用(を変数変換したもの)であるが、空間を周期運動する系の作用を考えたとき、この項は系の軌道に沿って一周だけ積分したものとなり、次の周回積分(閉曲線に沿った線積分)で表される。
初版 p.250	4行目	$(23.15) \sim (23.18)$	$(23.15) \sim (23.17)$
初版~2刷 p.255	最終行	$Q_i = -\frac{\partial W_2}{\partial P_i}$	$Q_i = \frac{\partial W_2}{\partial P_i}$
初版 p.261	3行目~4行目	ハミルトン形式に <mark>おいて</mark> ,作用は $S = \int_{q_1}^{q_2} p_i dq_i$	ハミルトン形式における、作用は、 次の形に書くことができる([21.61]) $S = \int_{q_i(t_1)}^{q_i(t_2)} p_i dq_i$
初版 p.261	5行目	の形に書くことができる((21.61))。 これを微分すれば	上式で $q_i(t_1)=q_A,q_i(t_2)=q_B$ とおき、同様に $p_i(t_1)=p_A$, $p_i(t_2)=p_B$ と定めると、 S の微分は
初版 p.261	6行目	$dS = p_2dq_2 - p_1dq_1$ $-\left\{H(q(t_2), p(t_2)) - H(q(t_1), p(t_1))\right\}$ dt	$dS = p_{ m B}dq_{ m B} - p_{ m A}dq_{ m A} \ - \{H(q_{ m B},p_{ m B}) - H(q_{ m A},p_{ m A})\}dt$
"	7行目	S は q ₁ , q ₂ , t の関数	Sはq _A ,q _B ,tの関数
"	9~10行目	$q_{1} = q_{i}, q_{2} = Q_{i}, p_{1} = p_{i},$ $p_{2} = P_{i}, H(q(t_{2}), p(t_{2}))$ $= K, H(q(t_{1}), p(t_{1})) = H$	$q_{A} = q_{i}, q_{B} = Q_{i}, p_{A} = p_{i},$ $p_{B} = P_{i}, H(q_{B}, p_{B}) = K,$ $H(q_{A}, p_{A}) = H$
初版~2刷 p.271	本文3~4行目	$S = \iint_R f(q,p)dqdp$ (25.1) という2重積分で表される(多重積分 については補遺 F を参照)。	$\iint_R f(q,p)dqdp$ (25.1) という2重積分の $f(q,p)=1$ の 場合に等しくなる。

初版~2刷 p.271	下から2~3行目	2重積分の変数変換の公式 $(F.28)$ を 用いると、 (25.1) は $S = \iint_R f(q,p)dqdp$ $= \iint_{R'} f\big(q(Q,P,t),p(Q,P,t)\big)JdQdP$	(25.1)で f =1とおき、 2 重積分の変数変換の公式 $(F.28)$ を用いると、 R の面積 S は $S=\iint_R dqdp=\iint_{R'} JdQdP$
初版~2刷 p.272	4~5行目	以下では $f = f(Q(q,p,t),P(q,p,t))$ の部分は本質的でないので,便宜上 $f = 1$ として話を進める。	→削除
初版 p.273	4行目	従って, (25.5) <mark>を</mark>	従って, (25.5) <mark>は</mark>
初版~2刷 p.278	3行目と5行目	$\frac{\partial Q}{\partial P}$	$\frac{\partial Q}{\partial p}$
初版~2刷 p.279	5行目	$=1+\left(\frac{\partial H}{\partial q\partial p}\right)^2dt^2-\left(\frac{\partial H}{\partial q\partial p}\right)^2dt^2$	$=1+\left(\frac{\partial^2 H}{\partial q \partial p}\right)^2 dt^2 - \left(\frac{\partial^2 H}{\partial q \partial p}\right)^2 dt^2$
初版 p.314	3行目	(23.34)の	(27.34) o
"	下から7行目	$S = \int_{q_1}^{q_2} p dq - \int_{t_1}^{t_2} H dt$	$S = \int_{q(t_1)}^{q(t_2)} pdq - \int_{t_1}^{t_2} Hdt$
初版 p.325	下から6行目	反時計回りに	時計回りに
初版~2刷 p.352	3行目	(28.20)	(28.2 <mark>1</mark>)
初版 p.367	12行目	<i>j</i> =	J =
初版 p.371	下から2行目	(29.34)	(29.3 <mark>2</mark>)
初版 p.388	下から3~2行目	ヤコビ方程式を用いて考える	ヤコビ方程式が次のように 書けることを利用する
初版 p.421	8行目	$K(x_b, t_b, x_c, t_a)$	$K(x_b, t_b, x_a, t_a)$
初版 p.426	2行目	$M = \int_{\alpha}^{\beta} \mathcal{D}x =$	$M = \int_{a}^{b} \mathcal{D}x =$
初版 p.457	9行目	$-\int_0^l \mathcal{L}dx$	$-\int_{0}^{L} \mathcal{L} dx$
初版 p.463	8行目	$-\int_{t_1}^{t_2} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left\{ \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \varphi}{\partial x} \right)} \right\} \delta \varphi dx dt$	$-\int_{t_1}^{t_2} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left\{ \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \varphi}{\partial t} \right)} \right\} \delta \varphi dx dt$
"	下から2行目	(…) 内は	[…] 内は
初版 p.470	16行目	v = v	v = v

『独学する「解析力学」』正誤表

2022/11/15 現在

初版 p.487	4行目	$\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} - \frac{1}{\mu_0} (\nabla \times \mathbf{B}) + \mathbf{j} = 0$	$\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} - \frac{1}{\mu_0} (\nabla \times \mathbf{B}) + \mathbf{j} = 0$