まずはこの一冊から 意味がわかる微分・積分 ● もくじ

微分・積分の意味がわかると、数学がさらに好きになる3			
――「はしがき」に代えて――			
** • **	他ハ オハヘノハ ジャールキー		
第0草	微分・積分のイメージをつかむ		
1	「微分=虫の目」で眺めてみる14		
	曲線をどんどん拡大していくと/「微分できない」こともある?		
2	曲線で囲まれた面積を考える「積分」17		
	ナイル川の氾濫が積分発祥のきっかけ?		
3	微分と積分の関係は?20		
	クルマの「走行距離・速度」を考えてみよう/「移動 距離→速度→加速度」の関係/さまざまな情報が1本 のグラフから得られる!		
4	開花時期の予想と積分25		
5	砲弾の軌跡と台風の進路27		
	微分は戦争とともに発展した?/微分・積分の応用は幅広く、楽しい		
你有主	n の外ハバナ ごての甘土 I		
弗 草	x ⁿ の微分がすべての基本!		
1	「距離、速度、加速度」が「微積」をつなぐ32		
2	f(x) = c の微分は? ······36		

3	1 次式 $f(x) = x$ の微分は?38
4	2次式 $f(x)=x^2$ の微分は? ····································
	曲線に接線を引いてみる/2次関数の「微分の法則 性」を知りたい
5	3 次式 $f(x) = x^3$ の微分は? ······ 45
	3次関数を微分の定義から考える
6	x"を微分すると ······48
7	$(x^n)'=nx^{n-1}$ を証明する50
	パスカルの三角形と二項定理/ルート(平方根)の微 分は?
8	$f(x)=ax^3+bx^2+cx+d$ を微分する55
€	<mark>1ラム</mark> ニュートン、ライプニッツ微分記号の違いは?
第2章	sinとcos、対数を微分する
第2章	sinとcos、対数を微分する sinを微分すると、何になる?
	sin を微分すると、何になる?60 サインカーブを描いて考えると/cosを微分する /三角関数の微分の法則性が見えてきた/人工衛星の 速度は三角関数の微分で
1	sin を微分すると、何になる?60 サインカーブを描いて考えると/cosを微分する /三角関数の微分の法則性が見えてきた/人工衛星の 速度は三角関数の微分で
1	sinを微分すると、何になる?
2	sin を微分すると、何になる? ····································

	eの定義 $/$ シャイロックの末裔の秘策とは?
5	対数 log を微分するには 79
	対数は指数の逆バージョン/対数の微分公式の証明
6	指数・対数の微分は何の役に立つ?84
	指数・対数を微分して化石の年代測定?
第3章	「極値」を究めよう!
1	グラフは増加・減少の連続だ88
	「区間」によってグラフの傾向が変わる/「増減無し」 の地点を探せ
2	増減表とはどういうもの?91
	グラフの増減は「接線の傾き」と一致/増減表は「コ ブの位置」を見つける道具
3	増減表でグラフの形を調べる96
	「増減無し」の点を探すことから始める
4	極大値・極小値を求める 103
5	最大値・最小値では、端点に注意106
	「極値」とはどう違うのか?/いよいよ最大値・最小 値を求めてみる
6	最大値・最小値トレーニング 111
	最大値・最小値は「習うより慣れよ」/デフォルメ・ グラフでわかりやすく

第4章 微分の応用問題にチャレンジ! 落下の法則をグラフにする……………… 116 ガリレオの実験と微分/真上に投げると…… 2 ブリキの板で最大の箱をつくる…………… 120 少ない材料で最大のものを/切り取る部分を変えると 3 三角の箱の最大容量は? ………………… 125 4 球の中の円錐を最大にする………………… 128 5 3次関数が3実根をもつ問題 ……………… 130 第5章 積分だからできる面積計算 1 マス目で面積に接近してみる ……………… 136 両側から接近するアルキメデスのアイデア 2 積分とは「微分の逆操作」……………… 139 3 インテグラルの意味と不定積分…………… 145 4 範囲が定まっている定積分……………… 150 5 x 軸より下にある面積の計算法は? ……… 155 2つの関数 f(x), g(x) で囲まれた面積 …… 158

ミスしない積分の計算法

□ラム 古代エジプト人は、円の面積を正方形に置き換えた?

第6章	ドーナツ型からカバリエリまで	2	「合成関数の微分」という方法201
1	体積は薄片を集めたもの 166		ややこしい関数は「合成関数の微分」で対応/少しレ ベルの高い計算もラクラク
	1ミリ幅のシリコンウエハ/体積は薄く切った面積の 集まり?	3	「置換積分」という方法 206
	加速度の加速度は「加々速度」		展開せずに積分する/一見、むずかしそうだが
2	x 軸に沿った回転体をつくる 171	4	定積分での置換積分は「範囲」に要注意211
	回転体は積分の定番/円錐、円柱の体積		区間の変更を忘れない!
3	y 軸に沿った回転体をつくる 175	5	円の面積公式を置換積分で214
4	ドーナツ型の体積を測る 179		円の面積= πr^2 はホント?
	円を回転させてドーナツ型をつくる/2つの回転体の	6	「部分積分」という方法 218
	引き算で/発想を変えてドーナツ型の体積を考える		積分しにくいものを扱う $/\log_{e^{\mathcal{X}}}$ を積分する法
5	パップス・ギュルダンの定理 184		
6	地球の体積を考える 186		
	まず、断面積を求めることから/積分を使わずに、積 分発想だけで考える	-	ニュートン近似が好きになる
7	カバリエリの原理は万能の積分ツール 190	1	シンプルな台形近似の方法 224
	カハウエウの原理は万能の傾力フール·······		
	面積、体積に役立つカバリエリの原理/長さが 2 倍の	2	台形近似よりよい近似のシンプソンの公式 226
Ω	面積、体積に役立つカバリエリの原理/長さが2倍の とき、面積は?	2	台形近似よりよい近似のシンプソンの公式 ···· 226 2次曲線で面積に接近する / πの近似値を出す
8	面積、体積に役立つカバリエリの原理/長さが2倍のとき、面積は?カバリエリの原理で球の体積を求める 194		
8	面積、体積に役立つカバリエリの原理/長さが2倍の とき、面積は?		2次曲線で面積に接近する/πの近似値を出す
	面積、体積に役立つカバリエリの原理/長さが2倍のとき、面積は? カバリエリの原理で球の体積を求める 194アルキメデスお気に入りの「球:円柱」の比	3	2次曲線で面積に接近する / πの近似値を出すニュートン法で近似する
	面積、体積に役立つカバリエリの原理/長さが2倍のとき、面積は?カバリエリの原理で球の体積を求める 194	3	2次曲線で面積に接近する / πの近似値を出す ニュートン法で近似する ·······························232 微分を使って√5 や∜5 を近似計算する / 繰り返して近似していく
第7章	面積、体積に役立つカバリエリの原理/長さが2倍のとき、面積は? カバリエリの原理で球の体積を求める 194アルキメデスお気に入りの「球:円柱」の比	3	2次曲線で面積に接近する / πの近似値を出す ニュートン法で近似する ····································

$\log(1+x) = x$ となる?

第9章	微分方程式を楽しもう!
1	「流れ」を予測する250
2	静止衛星の速度を求める 252
	位置を微分→速度、速度を微分→加速度/遠心力と重 力加速度がバランスする!/微分方程式で知的世界が 広がる
3	ケプラーの第3法則を求める 257
4	化石の年代測定と微分259 放射性元素の半減期/微分方程式を立てて解く
	かんが はいしポペンデーが表別 / レスカナナリベビエン C C が作 N

さくいん(Index)-----262